
LEGO/Logo
A Learning Environment for Design

Stephen Ocko, Seymour Papert, and Mitchel Resnick
Media Laboratory

Massachusetts Institute of Technology

1. Introduction
Elementary-school Science education is a largely unsuccessful enterprise.

Students bring a wide range of misconceptions to the Science classroom — and
they tend to leave with their misconceptions intact (Driver et al. 1985; West and
Pines 1985). Moreover, students do not gain much understanding of the nature
of the scientific process; even when they conduct experiments in the classroom,
few students seem to understand the purpose of experimentation (Osborne and
Freyberg 1985). This is hardly surprising since Science is often presented, in the
words of a recent government report (Bennett 1986), as “a grab bag of esoteric
facts and stunts.”

In this paper, we describe a computer-based system, called LEGO/Logo,
that offers a new approach to elementary Science education. LEGO/Logo places.......
engineering and design actiyitiesjat thejcenter of the' Science, çurriculum.:JJsing :

*tHe'sys*tem^tudents,;b)uild^machinês"oút'of^LEGO-building pieces '(including:
gears, motors, and sensors), connect the machines to a Computer, then write
Computer programs to control the machines. These activities can provide a more
meaningful and motivating context for learning traditional Science- curriculum
concepts, while also introducing elementary-school students to important engi
neering and design concepts that are rarely addressed in today’s curricula.

The LEGO/Logo system and the activities that surround it are based on
an educational philosophy that we call constructionism (Papert 1986). This
philosophy takes as one of its central tenets the idea that students learn best
when they are creating something that they believe in and care about. Like
most “hands-on” approaches to Science, the cònstructionist approach aims to
make abstract ideas concrete. But constructionism goes beyond traditional
hands-on science. In many hands-on lessons, students re-create someone else’s
experiment. Students are told what to measure and, in many cases, what the
answer should be. Even in more open-ended experiments, students rarely hàve
any deep sense o f involvement or interest in the activity.

LEGO/Logo projects have a very different flavor. LEGO/Logo links science
to a world that students are already familiar with and care about. Students

1

2

want to build and control LEGO machines. LEGO/Logo projects feel like “real”
projects, not experiments cooked up for classroom consumption. Moreover, im-
portant scientific concepts aie “ close to the surface” in LEGO/Logo activities.
Thus, LEGO/Logo projects can act as a motivating còntext for learning about
certain scientific principies (friction, mechanical advantage, etc.), and for learn
ing about the scientific process itself.

Equallv important, LEGO/Logo opens up new areas that are not tradi-
tionally addressed in pre-college science curricula. In particular, LEGO/Logo
provides a strong foundation for the study of design and engineering, or what
Herbert Simon calls “the Sciences of the artificial” (Simon 1969). LEGO/Logo
provides an environment in which students can explore engineering ideas like
feedback and modularity. And while working on LEGO/Logo projects, students
can develop a systematic approach to design and invention.

The LEGO/Logo environment is particularly powerful in that it combines
design activities in both the LEGO domain and the Logo domain. Logo itself
provides a good environment for learning about design ideas like modularity
and abstraction (Papert 1980; Harvey 1986). With LEGO/Logo, students can
experiment with the same ideas in two domains. Thus, they are more likely to
recognize that there are, in fact, deeper general principies involved.

In this paper, we present a general overview of our work with LEGO/Logo.
Section 2 provides a description of the LEGO/Logo system. Section 3 discusses
how we have used LEGO/Logo in the classroom. Section 4 gives an extended
example of a LEGO/ Logo^project. Section 5 offers some concluding comments
*and suggests directions for future study. XXX

2. The LEGO/Logo system

In some ways, LEGO/Logo can be viewed as a throwback to the early days
of the Logo programming language. Early experiments with Logo in the 1960’s
used a “floor turtle,” a simple mechanical robot connected to the Computer by a
long “umbilical cord.” Students used Logo commands (such as f orward, back,
l e f t , and r igh t) to move the floor turtle around the room.

With the advent of video display terminais, the Logo community shifted its
focus to the “screen turtle.” Screen turtles are much faster and more accurate
than floor turtles, and thus allow users to create more complex graphics. Logo
is curreritly used in more than one third o f all elementary schools in the United
States, typically with an emphasis on turtle graphics.

LEGO/Logo brings Logo back to three dimensions — but with several im
portant differences. First of all, LEGO/Logo involves two types of building:

2

building LEGO structures and building Logo programs. Second, students are
not restricted to turtles; they can build and program a wide variety of dif-
ferent types of machines. Students in our LEGO/Logo classes have built and
programmed everything from roller coasters to robots, from conveyor belts to
pop-up toasters.

The LEGO/Logo system includes an enhanced set of LEGO building mate
riais. In addition to the familiar LEGO building blocks, there is an assortment ’
of gears, wheels, motors, lights, and sensors. The Computer communicates with
LEGO devices through a custom-designed interface box, which connects to a
paraUel card in the Computer. Information flows through the interface box in
both directions: students can send commands to LEGO motors and lights, and
receive status information from LEGO sensors.

Imagine, for example, a LEGO car with a touch sensor on the front. A
student can write a program that checks whether the touch sensor is being
“pressed” — that is, whether the car has bumped into a wall. The program
might make the car reverse direction whenever the car hits a wall.

As its programming language, LEGO/Logo uses an expanded version of
Logo. Students can use any of the traditional Logo primitives and control
structures (if , repeat, etc.), plus any of 20 new primitives added specially for
the LEGO environment (such as on, o ff , and sensor?). The new primitives
are described in the Appendix.

A typical LEGO/Logo procedure is shown at the top of the next page. The
'-pfòc^dufe>^|qts*ántil!£a?LEG ^tòuclf--^rigbr"is,*priãss^7^Ken':(makes.Ta--LEGÒ. .^ ^ :
light flash on and off five times:

— to push-button
listen to :touch-sensor
waituntil [sensor?]
talkto : light
repeat 5 [onfor 20 vait 10]
end

3. LEGO/Logo in the classroom

During the past two years, we tested the LEGO/Logo system with about a
dozen elementary-school classes (mostly grades 3-5). Each class used the system
for about ten weeks, for roughly three hours per week. With each class, we
introduced LEGO/Logo through arelatively standard sequence of activities. In
this section, we describe these introductory activities and explain the rationale
behind them.

3

Students started with a simple design activity that did not include the.Com
puter. We set up a ramp in the classroom, and students built LEGO soapbox
cars to race down the ramp. As a goal, we suggested that students try to design
cars that would travei as far as possible off the end of the ramp.

Through this activity, students became familiar with basic LEGO pieces
and building techniques. Equally important, the activity introduced students
to some basic principies of experimentation and design. As students modiíied
their cars to make them go further (changing wheel size, changing weight, etc.),
we discussed the importance of changing just one variable at a time. We also
encouraged each student to keep an “ Inventor’s Notebook” to document; the
design process.

Next, students added gears and motors to their cars and supplied power
from a battery box. .We suggested that students try different gear ratios to see
which combinations were best for going fast on a flat surface, for climbing ramps,
and for winning tugs-of-war with other cars. Through these activities, students
gained some understanding of transmission systems, mechanical design, and
mechanical advantage.

Finally, we added the Computer. Students wrote programs to make their cars
move in various patterns. Then they added sensors tô their cars, and modified
their programs so that the cars would, for example, reverse direction when they
bumped into obstacles.

- * After these introductory activities, students worked on “personal projects”
.of.their.own choosing:rSome.,continued to .workon.vehicles (trucks, cable-cars “
trains)” while others moved to different types of machines (such ás factory ma
chines or household appliances). We encouraged students to view themselves
as inventors. For example, we established a system of LEGO/Logo patents, and
awarded them to students who appropriately documented their “inventions”
through drawings and descriptions.

4. Sample project: A vibrating walker

It is difficult to generalize about LEGO/Logo projects. LEGO/Logo is an
environment, not a constrained set of activities; students (and teachers) can use
it in many different ways. Nevertheless, we attempt to give a flavor of students’
experiences by describing in some detail one particular LEGO/Logo project,
developed by a fourth-grade student named Nicky.

Like many students, Nicky started by building a car out of LEGO. After
racing the car down a ramp several times, Nicky added a motor to the car and
conneçted it to. the Computer. When he turned on the motor, the car moved

4

forward a bit — but then the motor fell off the body of the car and began
vibrating across the table.

Rather than trying to fix this bug (or, worse, giving up sinc.e his car had
“failed”), Nicky became intrigued with the vibration of the motor. He began to
wonder whether he might be able to use the vibrations to power a vehicle. In
effect, he decided to turn the vibrations from a bug into a feature.

Figure 1: Nicky s n

Nicky mounted the motor on a platform atop four “legs” (LEGO axles). r
^ÃftersÕmè ^perimentãtioh,:Nicky rèalized that hemeeded some.way tò amplify'

the motor vibrations. To do that, he drew upon his personal experiences riding
his skateboard. Nicky remembered that swinging his arms gave him an extra
“push” on the skateboard; he figured that a swinging arm might accentuate
the vibrations of the motor as well. So Nicky connected two LEGO axles with
a hinged joint to create an “arm.” Then he placed a gear on the motor and
inserted the arm slightly off-center in the gear. As the gear turned, the arm
whipped around — and amplified the motor vibrations.

In fact, the system vibrated so strongly that it frequently tipped over. A
classmate suggested that Nicky create a more stable base by placing a LEGO
tire horizontally at =fche bottom of each of the legs. Nicky made the revision,
and his_“vibrating walker” worked perfectly. When the motor turned in one
direction, the walker vibrated forward and to the right. When the motor turned
in the other direction, the walker vibrated forward and to the left. Nicky had
succeeded in building a steerable one-motor vehicle, a non-trivial engineering
feat.

Next, Nicky set out to make the walker follow a black line on the table top.
He attached a LEGO optosensor (pointing down) at the front of the walker.

When the the walker passed over a black line, the sensor reported true. With a
bit of assistance, Nicky wrote this program to make the walker follow the line:1

to fo llo w
lo o k - fo r - l in e
g o -p a s t-lin e
rev erse -d irection
fo llo w
end

to lo o k - fo r - l in e
w a itu n til [f lo o r -c o lo r = "b lack]
end

to g o -p a st-lin e
w a itu n til [f lo o r -c o lo r = "white]
end

to f lo o r - c o lo r
i f sensor? [output "b lack]
i f not sensor? [output "w hite]
end

When the fo llo w procedure is executed, the walker veers in one direction
~ - untilit “finds” the lipe, continues in that direction until it passes over thedme- :b~-,

h r thèmfeverses the"direction of itsjnotbr and repeats the process. Ás a result, the :
walker weaves back and forth over the line, making a bit of forjyard progress
with each cycle.

What did Nicky learn through this project? For one thing, he gained an
introductory understanding of some specific engineering concepts. In building
the walker, Nicky ended up with an appreciation for both the constructive
uses and the destructive potential of vibration in mechanical systems. And
in programming the walker to follow the line, Nicky explored basic ideas of
feedback and control. Nicky used these same ideas in a later project, when he
programmèd a LEGO “turtle” to find its way out o f a box. ^

Equally important, Nicky gained a sense of the process of design. Indeed, in
building the walker, Nicky used an impressive array of design heuristics. Among
them:

• Take advantage o f the unexpected. When the motor fell off of his car,
Nicky did not see it as a sign of failure. He saw it as an opportunity. He

JWe have “cleaned up” Nicky’s code and divided it into subprocedures in order to make
the program more readable.

6

was on the lookout for unexpected events, and took advantage of them
when they happened.

• Use personal experience as a guide. When Nicky needed to amplify the
vibrations of the motor, he relied on knowdedge of his own experiences and
bodv movements.

• Try using materiais in new ways. The designers of LEGO probably did
not énvision LEGO axles used as arms or legs. Nor did they imagine that
LEGO wheels would be turned 90 degrees and used as feet. But Nicky
did not feel constrained by standard usage.

• Collaborate with cthers. When the vibrations kept tipping the w7alker
over, Nicky wras uncertain how to solve the problem. So he consulted
with a classmate who had a reputation for mechanical-design skills. The
collaboration was a success. Such group efforts are particularly important
in multi-disciplinary activities like LEGO/Logo.

In discussing LEGO/Logo projects, we encouraged students to think and
talk explicitly about such design heuristics. In many cases, we believe that
LEGO/Logo activities helped students develop a principled approach to design
and invention.

5; ̂ Fut ure -directions

Our work with LEGO/Logo duringjthe past two years has convinced us of
the educational value of constructionist activities. A broad range of students
enjoyed working on LEGO/Logo projects (to the point of wanting to continue
working during lunch and after school), and their high levei of motivation seemed
to pay off in several ways. Not only did students appropriate new ideas about
science and design, many seemed to gain a heightened sense of self-confidence
in themselves as learners.

To date, however, most of our observations have been anecdotal. There
is clearly a need for more fine-grained studies of students’ design activities in
LEGO/Logo. Future research could go in many different directions: •

• Role o f the teacher. As students worked on personal LEGO/Logo projects
(after the introductory activities), we and the classroom teachers provided
only a minimal structure. Clearly, though, we played an important role
in helping students conceptualize their projects and make connections to
general principies. Future research could look at the appropriate role for
teachers in open-ended design activities like LEGO/Logo.

• Differences among students. We were particularly pleased that LEGO/Logo
appealed to a broad range of students of both genders; its appeal was not
limited to those students seen as “good at math and science.” Different
students, though, worked on different types of projects, and with different
design styles. A study of these stylistic differences could prove interesting.

• Transfer. Can students transfer the skills used in LEGO/Logo to other
activities? In particular, does LEGO/Logò experience affect students’
approach, competence, or self-confidence in other design activities?

• New programming paradigms. In programming LEGO/Logo machines,
students sometimes want to program more than one device at a time (for
example, making one LEGO “animal” chase another). Such concurrent
control is not possible (or, at least, it is very difficult) using traditional
programming languages. To address this problem, we have developed
and tested an extension of Logo that includes concurrent-programming
constructs (Resnick 1988). We believe further research in this direction
would be worthwhile.

• Different ages. Most of our work has focused on elementary-school stu
dents. In the future, we plan to work with older students on more complex
projects. LEGO/Logo could, for example, serve as the base for a high-
school course on artificial intelligence and robotics, or as a useful tool
within a high-school physics course.

~New~sénsórsNihd iactuatÕrsi~iln míost o f du7;wdfk",^tudèntsywere^dimited*
-T"-' to two types of sensors (touch sensors and ôptosensòrs) and two types of

actuators (motors and lights). Adding new sensors and actuators would
expand the range of possible projects.

Acknowledgments

Our research on LEGO/Logo is supported by grants from LEGO A /S and
the National Science Foundation.

LEGO Systems Inc. now markets a version of the LEGO/Logo system under
the product name LEGO TC logo. Logo Computer Systems Inc. implemented
the software for this commercial version.

References

Bennett, William (1986). First Lessons: A Report on Elementary Education
in America. U.S. Department of Education.

Driver, R., et al. (1985). Children’s Ideas in Science. Open University Press.
Milton Keynes, England.

Harvey, B. (1986). Computer Science Logo Style. MIT Press. Cambridge.

Osborne, R., and Freyberg, P. (1985). Learning in Science: The Implications
of Children’s Science. Heinemann Publishers. London.

Papert, S. (1980). Mindstorms. Basic Books. New York.

Papert, S. (1986). Constructionism: A New Opportunity for Elementary
Science Education. A Proposal to the National Science Foundation.

Resnick, M. (1988). MultiLogo: A Study of Children and Concurrent Pro
gramming. Master’s thesis, Laboratory for Computer Science, MIT.

Simon, H. (1969). The Sciences of the Artificial. MIT Press. Cambridge.

West, L., and Pines, A.L. (1985). Cognitive Structure and Conceptual Change.
Academic Press. New York.

Appendix: LEGO/Logo primitives

1. Output primitives

• ta lk to port

Tells the Computer which ports it should “talk to” when it sends commands to
the interface box.

• on

Turns on motors and lights.

• off

Turns off motors and lights.

• a llo ff

Turns off all motors and lights connected to all ports.

• onfor ticks

Turns on lights and motors for the indicated ticks of time. There are ten “ticks”
in one second. " '

Reverses the direction of motors.

• seteven

Sets the direction of motors to the “even” direction. (Each motor port has two
directions: the “even” direction and the “odd” direction.)

• setodd

Sets the direction of motors to the “odd” direction.

• flash ticks-1 ticks-2-

Tells lights to begin flashing. The lights will turn on for ticks-1 time, off for
ticks-2 time, over and over. There are ten ticks in a second.

10

• setpover levei

Sets the power. levei for motors and lights. The power levei aífects the speed of
motors and the brightness of lights.

2. Input primitives

• l is t e n t o port

Tells the Computer to “listen to” the indicated port for receiving information
from sensors.

• sensor?

Reports the state of the sensor. Each sensor has two possible states: true and
fa ls e .

• counter

Reports the value of the sensor counter. The sensor counter automatically
increases by one every time the sensor switches from fa ls e to true. This
primitive is particularly useful for measuring the rotation of the LEGO counting
wheel (a disk with alternating black and white slices).

_ • re s e tc ■■■.■■.*

 ̂rRésets the value of The 'sensor, counter *tõ :zero. í:

• pulsew idth

Reports the duration of the sensor’s most recent true pulse. That is, it reports
the length of time between the most recent f a lse-to-true and tru e-to -fa lse
transitions. This primitive is very useful in measuring differential quantities,
such as the velocity of a car.

3. Control-structure primitives -

- • waituntil list

Waits until the value of list is true. For example, w a itu n til [sensor?] waits
until sensor? reports a value of true.

11

