

Núcleo de Informática Aplicada à Educação Universidade Estadual de Campinas

Resumo

A representação de um problema é fundamental tanto para seu entendimento como para sua solução. A partir da identificação dos problemas envolvidos no aprendizado de conceitos de programação faz-se uma proposta de um sistema computacional de representações análogas a este aprendizado.

NIED - Memo N° 9 1988

O Uso do Computador como Ferramenta Auxiliar no Entendimento de Conceitos de Programação em Logo.

Heloísa Vieira da Rocha

Cidade Universitária "Prof. Zeferino Vaz" Prédio V da Reitoria - 2º Piso 13083-970 - Campinas - SP

Telefones: (0192) 39-7350 ou 39-8136

Fac-símile: (0192) 39-4717

O uso do computador como ferramenta auxiliar no entendimento de conceitos de programação LOGO

Heloísa Vieira da Rocha¹

Introdução

Tem se como fato a importância da representação de um problema, tanto para seu entendimento quanto para se conseguir a sua solução.

Um exemplo famoso que ilustra esse fato é o problema do "tabuleiro de xadrez mutilado". Suponha que se tem um tabuleiro de xadrez do qual dois cantos diagonalmente opostos são retirados, restando portanto, no tabuleiro, sessenta e dois quadrados. Agora suponha que se tem trinta e um dominós, cada qual cobrindo exatamente dois quadrados do tabuleiro. A pergunta do problema é: "Pode-se encontrar algum modo de arranjar estes trinta e um dominós no tabuleiro de modo a cobrir todos os sessenta e dois quadrados?" Se isto pode ser feito, explicar como. Se não puder, prove porque.

Poucas pessoas são capazes de resolver este problema e muito poucas vêem a resposta rapidamente. A resposta correta é que o tabuleiro não pode ser coberto pelos dominós e somente se chega a esta solução se incluir na representação do problema o fato de que cada dominó precisa cobrir um quadrado preto e um branco, e não qualquer dois quadrados. A partir disto tem-se que não existe outro modo de colocar um dominó em dois quadrados do tabuleiro sem ter que cobrir exatamente um quadrado branco e quadrado preto. Isto significa que com trinta e um dominós se pode cobrir trinta e um quadrados pretos e trinta e um quadrados brancos. Mas a mutilação removeu dois quadrados pretos e portanto, restam no tabuleiro trinta quadrados pretos e trinta e dois quadrados brancos. Isto segue que o tabuleiro não pode ser coberto por trinta e um dominós.

Pode-se perceber como a solução fica fácil quando se usa a representação adequada, ou seja, quando representa cada dominó como cobrindo um quadrado preto e um quadrado branco. Com esta representação do problema se é encorajado a contar e comparar o número de quadrados brancos e pretos. Portanto o efeito da representação do problema é que ela possibilita o uso de operadores críticos para se chegar à solução.

Departamento de Ciência da Computação
Núcleo de Informática Aplicada à Educação
Universidade Estadual de Campinas – São Paulo

Pode-se extrapolar esta idéia ao entendimento de conceitos abstratos. Tem-se da experiência, que muitas vezes ao se tentar transmitir um conceito é preciso apresentá-lo de diferentes formas para se conseguir que seja assimilado. Em se tratando de conceitos computacionais tais como, variáveis e seu escopo, supere sub-procedimentos, recursão interação, etc., geralmente se faz uso de representações que espelham a execução de um programa para que os conceitos sejam entendidos e consequentemente utilizados corretamente. Existe na literatura específica de programação diversas formas de representação, podendo-se citar: diagramas de execução, diagramas de blocos, árvores da estrutura do programa, etc. Desta preocupação de se chegar à representações que de alguma forma mostrem como o programa é executado e da experiência que se tem do ensino de programação, pode-se concluir que a dificuldade básica de se entender conceitos de programação é que não se consegue enxergar como realmente o computador executa um programa.

Este fato também é evidenciado quando de introduz a linguagem Logo. A "porta de entrada" do Logo é sem dúvida a parte gráfica, pois através da execução de programas que fazem desenhos, de alguma forma tem-se espelhado o comportamento passo-a-passo do programa. Mas para avançar da parte gráfica, se encontra sérias barreiras, pois o nível de abstração cresce consideravelmente. Não se pode mais acompanhar o processamento. O que se tem é simplesmente o resultado, na forma de listas, sentenças, palavras ou números. Torna-se difícil entender como o computador chegou ao resultado, pois não se pode acompanhar o processamento.

Objetivo

O objetivo deste trabalho é apresentar a pesquisa que venho desenvolvendo no sentido de avaliar a efetividade, quanto ao entendimento de conceitos de programação, de sistemas computacionais que, em tempo real, ou seja, simultaneamente, fornecem representações alternativas da execução de programas Logo.

Apresenta-se quais conceitos serão tratados, qual o subconjunto da linguagem Logo que será considerado e as idéias iniciais dos elementos que deverão estar presentes nas representações. Também são apresentados os resultados esperados desta pesquisa.

Conceitos que serão tratados e como se pretende espelhá-los na representação

A idéia inicial da forma geral da representação é a do sistema proporcionar três janelas concomitantemente no vídeo.

Em uma delas se terá o texto do procedimento em execução e em vídeo reverso a instrução que está sendo executada. Desta forma se transmite a idéia de sequencialidade de execução das instruções dentro de um programa.

Quando ocorrer a chamada de um sub-procedimento, o texto do procedimento chamante será substituído pelo do procedimento chamado. Ao final da execução do sub-procedimento, retorna à tela o texto do procedimento chamante e prossegue-se a execução. tem-se então espelhado como é efetuada a chamada e retorno de procedimentos. O mesmo esquema é utilizado para procedimentos recursivos.

No caso de procedimentos recursivos, para que se possa transmitir como é efetuado o retorno da recursão, que sem dúvida é um dos pontos críticos no entendimento da recursão, deve-se explicitar o nível das chamadas. Isto será feito em uma segunda janela, onde se terá a construção dinâmica da árvore de estrutura do procedimento. Esta árvore será representada graficamente, no formato usualmente utilizado em computação para representar a estrutura de árvores.

A terceira janela irá conter o "display" das variáveis, que serão representadas por caixas nomeadas. Dentro das caixas se terá o valor corrente da variável. No caso do valor ser uma lista, ele terá uma representação que facilite o entendimento da estrutura, especialmente no que tange as listas estruturadas na forma de sub-listas. A idéia inicial é de se representar estas listas na forma usualmente utilizada em computação para representar listas ligadas. Portanto no caso de programas que constróem listas, poderá se ter uma visão gráfica e dinâmica de como estas estruturas estão sendo criadas.

Esta janela tem por objetivo ressaltar os aspectos relativos à conceituação de variáveis e seu escopo de validade, mostrando variáveis que passam a existir no momento da chamada de um procedimento e que deixam de existir no final da execução. Também deverá ser ressaltado o mecanismo de passagem de parâmetros, representando o transporte de valores.

Sempre que houver o cálculo de expressões, será mostrada nesta janela o processo, passo-a-passo, como a expressão é calculada.

Como aspecto geral da representação, pretende-se permitir que os usuários possam interagir com o sistema, podendo por exemplo:

- parar a execução em qualquer ponto
- pedir para passar rapidamente sobre partes do programa e dar um tipo de "slow motion" em outras partes.
- dispensar partes da representação. Por exemplo, solicitar somente a árvore da estrutura, dispensar o cálculo da expressão, etc.

Outras formas de interação poderão se definidas, em decorrência da experimentação que se pretende fazer junto a usuários, do primeiro protótipo do sistema. Da mesma forma poderão ser alteradas quaisquer outras características da representação.

Qual subconjunto da linguagem LOGO será considerado

Pelas razões levantadas na introdução, não se irá considerar os aspectos gráficos da linguagem LOGO. Deve-se ater aos comandos que manipulam palavras, listas e números. Dentre estes comandos definiu-se um sub-conjunto mínimo que permita todo tipo de manuseio dos objetos considerados.

Além das primitivas especificamente relacionadas aos objetos considerados se irá ter os comandos:

- repetição (repita)
- condicional (se então)
- definição de procedimentos (aprenda)
- atribuição de valor (coloque)
- entrada e saída (care, line, esc)
- transmissão de resultados de procedimentos (envie)

Metodologia de desenvolvimento do sistema computacional

As fases que irão compor o desenvolvimento do sistema serão basicamente quatro:

- construção do interpretador para o subconjunto dos comandos Logo
- construção de um protótipo rápido das representações
- depuração e aperfeiçoamento do sistema através dos resultados observados da interação de usuários com o sistema
- validação do sistema final, estabelecendo-se grupos de controle, pré e pós testes.

Estágio de desenvolvimento do projeto

O projeto está sendo desenvolvido em um micro da linha PC. Como linguagem de implementação foi escolhido o Pascal Turbo, versão 4.0. A escolha dessa linguagem se deu pela familiaridade que se tinha com a linguagem e as facilidades que ela oferece quanto à criação de janelas múltiplas e pelas facilidades gráficas de um modo geral.

Atualmente tem-se praticamente implementado interpretador para o subconjunto da linguagem Logo.

Também já esta feito o projeto inicial das janelas com o conjunto de elementos que elas devem conter. Portanto o próximo passo será implementar no interpretador as rotinas que tragam para a tela as informações definidas no projeto. Esta implementação será feita gradualmente, ou seja, implementando-se uma janela por vez.

Pretende-se ter o protótipo pronto para ser testado em meados do segundo semestre de 1988.

Conclusão

Os resultados esperados sob o ponto de vista de pesquisa são:

- a) conhecimento de como pessoas entendem conceitos computacionais básicos.
- b) sistemas computacionais, de tempo real, desenvolvidos com o objetivo de aperfeiçoar e facilitar o entendimento de processos e conceitos essenciais à atividade de programação.
- c) conhecimento sobre a influência do uso de tais sistemas, ou seja, do uso de representações alternativas, no entendimento de processos e conceitos abstratos em geral.

A generalização que se pretende conseguir dos resultados obtidos, à outras áreas de conhecimento, é muito importante do ponto de vista de se aumentar a amplitude do uso de computadores nas escolas.

Considerando-se a pouca oportunidade que as escolas oferecem para que alunos manipulem conceitos e processos abstratos tais como velocidade, equilíbrio, temperatura, etc., pode-se construir representações alternativas visando aprimorar o aprendizado oferecendo oportunidades adicionais para estudantes manipularem e observarem os processos.

Adicionalmente pode-se fazer uso do sistema, como um modo de facilitar a entrada no Logo por outra "porta" que não a gráfica. Também se poderá ver o sistema como um protótipo de uma ferramenta de depuração, que inexiste nas implementações disponíveis de LOGO.